Step of Proof: trans_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
trans
functionality
wrt
iff
:
T
:Type,
R
,
R'
:(
T
T
).
(
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
))
(Trans(
T
;
y
,
x
.
R
(
x
,
y
))
Trans(
T
;
y
,
x
.
R'
(
x
,
y
)))
latex
by ((((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
)
CollapseTHEN (Unfold `trans` 0))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
R'
:
T
T
C1:
4.
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
)
C1:
(
a
,
b
,
c
:
T
.
R
(
b
,
a
)
R
(
c
,
b
)
R
(
c
,
a
))
(
a
,
b
,
c
:
T
.
R'
(
b
,
a
)
R'
(
c
,
b
)
R'
(
c
,
a
))
C
.
Definitions
P
Q
,
P
&
Q
,
t
T
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
x
(
s1
,
s2
)
,
P
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
iff
wf
origin